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ABSTRACT
Refrigeration is a major component of supermarket energy con-
sumption. Ensuring faultless operation of refrigeration systems
is essential from both economic and sustainability perspectives.
Present day industry practises of monitoring refrigeration systems
to detect operational anomalies have several drawbacks: (i) Over-
dependence on human skills; (ii) Limited help in identifying the
root-cause of the anomaly; and (iii) Presumption about high degree
of instrumentation – which prevents their usage in supermarkets in
developing economies. Existing approaches in literature to detect
anomalies in refrigeration systems either are done in controlled lab-
oratory settings or assume the availability of sensory information
other than energy. In this paper, we present an approach to detect
anomalous behavior in the operation of refrigeration systems by
monitoring their energy signals alone. We test the performance of
our approach using data collected from refrigeration systems across
25 stores of a real world supermarket chain. We find that using en-
ergy signal, we can not only detect anomalies but also narrow down
the possible root-cause of the anomaly to a reduced set. Further, us-
ing energy signal along with data collected from other sensors (if
available) allows us to reduce the false positive rate while identify-
ing the root-cause of the anomaly.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis; J.2 [Physical
Sciences and Engineering]: Engineering

Keywords
Refrigeration; Energy; Anomaly detection; Root-cause analysis

1. INTRODUCTION
Refrigeration in supermarkets: The annual energy intensity of
supermarkets is around 50 kWh per sqft., which is more than twice
the intensity of office buildings [2]. Reducing electricity costs by
10% can boost the (typically thin) profit margins of supermarkets
by 16% [15]. Therefore, it is important to discover ways to reduce
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energy consumption of supermarkets. Refrigeration is a key con-
tributor to supermarket energy consumption. Refrigerated systems
(RS) are used to maintain produce, dairy, and meat that are perish-
able at a temperature well below the HVAC conditioned tempera-
ture. Unlike space cooling, RS consumes significant energy even
during winter; for instance, frozen food needs to be maintained
typically at −6◦F even when the space (i.e., indoor ambient) tem-
perature around refrigeration cases is maintained 70◦F in winter.
Thus energy consumed by RS can even surpass that of the HVAC
systems for space cooling of the overall supermarket [1,8]. Conse-
quently, any optimization of supermarket electricity consumption
necessarily needs to look at RS and that too throughout the year.

RS are subject to maintenance routines scheduled at regular in-
tervals to address any wear and tear. As in any other physical asset,
despite regular maintenance faults do occur. If a fault is critical, the
entire RS can become unfit for use leading to a complete shut down
necessitating an emergency maintenance. If the fault is non-critical,
it will degrade the performance of the overall system while allow-
ing it to be functional. An unattended non-critical fault may affect
the energy consumption and can become a future critical fault.
Current maintenance practices and challenges: Refrigeration
systems in large supermarket chains are increasingly being equipped
with sensors to monitor various parameters. This sensory data is re-
layed to a centralized remote monitoring center. In these centers,
human operators analyze the data either online or on demand basis
when the sensor values exceed preset thresholds.

This present model of remote monitoring has several drawbacks:
(i) It relies heavily on the ability of human operators to detect
anomalies. If the operators do not have the necessary skill-sets, de-
tection of anomalous behavior can get delayed, or even worse not
happen at all; (ii) Typically, the operators pick up only the symp-
toms to trigger a maintenance work-order. It is up to the visiting
technician to do the root-cause analysis on the ground and do the
necessary fixes. Any guidance that can be given to help the techni-
cian’s diagnostic process will reduce the time and hence the costs
associated with the fix. (iii) It assumes the existence of a high de-
gree of instrumentation. Refrigeration assets in small convenience
stores and supermarkets in developing economies do not have such
a high degree of instrumentation. At best, they may have only en-
ergy meters for the refrigeration assets. Hence, the present remote
monitoring model cannot be used for these stores.

Given these drawbacks in terms of limited instrumentation and
the need to reduce the time taken to identify anomalies even in such
a scenario, the following questions arise:

• Is it possible to detect anomalous behavior in refrigeration
systems by monitoring their energy signals alone (which are
likely to be available only at coarse temporal resolutions)?
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• To what extent would it be possible to identify the possible
components or reasons for the anomalous behavior using the
energy signal alone?

• If additional sensors are available, can these be used in con-
junction with the energy signal to detect faults and identify
the root-cause automatically?

Existing models for detecting anomalies in refrigeration systems
and diagnosing the root causes have mostly been done in controlled
laboratory settings [3, 6, 7, 11–14, 17]. These may not be applica-
ble in real world scenarios since the operating conditions may be
different from a controlled environment. Consequently, the rules
derived in laboratory may not be applicable. Further, not all sen-
sors required by the laboratory models may be available in prac-
tise. There are also works which attempt to detect anomalies in
refrigeration cases from the energy consumption signal [4]. How-
ever, these approaches require information pertaining to indoor and
outdoor temperatures, indoor and outdoor humidity, and the loads
imposed by the occupants to develop their energy models – all of
which may not be available in all the stores. Further, the extent to
which the root cause of the problem can be diagnosed has not been
analyzed in these works.

In this paper, we attempt to address the above mentioned ques-
tions using data collected from refrigeration systems in real-world
supermarket stores. Addressing these questions is non-trivial for
the following reasons: (i) Typically, energy consumption of refrig-
eration units is measured at an aggregate level – i.e., several com-
pressors and condenser units are grouped together in racks and it
is this rack consumption that gets measured. In addition, this rack
of compressors and condensers serve several refrigeration cases.
Hence, a fault in one of the cases or compressor/condenser units
may not manifest in the measured aggregate energy signal. (ii)
Since energy consumption results from the aggregate performance
of all refrigeration components, a single component’s anomaly may
not affect the overall energy significantly enough (or uniquely enough)
to be traced back.

We overcome the challenges through these contributions.

• We develop an energy model that is sensitive enough to pick
up even short-lived anomalies in the energy signal so that we
maximize our likelihood to detect an anomaly. Simultane-
ously, our model also allows us place a bound on the false
positives. We do this by integrating a statistical model and a
physical model thereby overcoming the limitations of both.

• We use the direction of the anomaly as a signature to iden-
tify the anomaly root-cause as a group of components (rather
than an individual component).

• If additional sensors are made available, we develop statisti-
cal models for the sensor data. By leveraging the anomalies
detected by these statistical data models, we identify the in-
dividual component that is likely to be at fault.

These models have been developed and tested on real world sen-
sory data and work-order logs obtained over a period of five months
from refrigeration systems deployed across 25 stores from a su-
permarket chain1. The data was collected over every 15 minutes
and included the energy consumption of the refrigeration systems
and sensory information wherever available. In this period, we ob-
served four different work-orders occurring across these 25 stores,
at times even repeatedly. Our findings from this study include:
1The identity of the chain is withheld due to confidentiality require-
ments.

• The classification rules based on anomalies in the energy sig-
nal can detect between 80− 95% of all anomalies. The false
positive rates in most stores is about 0.2%.

• Detecting anomalies using a set of sensors can classify in-
dividual anomaly types with a detection likelihood between
66− 100% across all types. The false positive ratio is again
bounded by 0.2%.

• We note that if the supplementary sensors alone are used for
detecting faults in individual components, the resulting false
positive rate is higher than what would be possible when us-
ing the sensors along with the overall energy signal. This
is due to the correlated nature of the energy and individual
sensory signals.

• For the detected anomalies, the average detection time is
2.8 − 21 days before the work-order is actually logged in
the system. The model is able to pick up steady deteriora-
tion from the baseline over a period of time, well before the
human operators notice the symptoms and log it.

To the best of our knowledge, ours is one of the first few pa-
pers to report on detecting and identifying faults in supermarket
refrigeration systems using real-world data logs from an ensemble
of stores. The rest of this paper is organized as follows. Section 2
presents a survey of related work. A background on supermarket
refrigeration is presented in 3. We develop statistical and phys-
ical models for the energy consumption in Section 4. Section 5
gives a short introduction to the faults we had observed in the real
world stores. Using the energy model as the baseline we predict if
an observed energy sample can be classified as anomalous and if
so of what type in Section 6. Section 7 discusses how additional
sensor based information can help in reducing false positive rates
of anomaly detection and identify the sub-type of the anomalies.
Section 8 concludes the paper.

2. RELATED WORK
Work related to ours can be broadly categorized into two groups.

Fault diagnosis in refrigeration and air-conditioning systems:
Works on detecting anomalies in refrigeration systems and diag-
nosing the root causes [3, 5–7, 12, 17] typically use simple sensor
value based thresholding or techniques such as PCA and SVM to
detect the anomalies. However, these have mostly been done in lab-
oratory settings or as controlled one-off experiments. In real-world
scenarios, the operating conditions and availability of sensors may
be different from a controlled environment. Consequently, the rules
derived in laboratory may not always be applicable in real world.

Some works attempt to detect anomalies (but not identify the
root-cause) in refrigeration cases from the energy consumption sig-
nal [4]. However, unlike us, these approaches require additional in-
formation pertaining to indoor and outdoor temperature, indoor and
outdoor humidity, and loads imposed by the occupants to develop
the energy model – all of which may not be available in all the
stores. Further, the extent to which the root cause of the problem
can be diagnosed has not been quantified in these works.

Our work complements existing works in that we use time-series
models such as ARIMA/SARIMA (which have not been reported
earlier) with reasonable success to detect anomalies and identify the
root-cause in refrigeration systems. Further, our approach works
with limited existing sensor and metering infrastructure.

Domain model based approaches to detect faults and identify
the root-causes have also been suggested in the literature [11, 14].
These approaches rely on the ability to develop a well-calibrated
domain model that mimics the operations of a real world refrig-
eration system. While such an approach can be quite powerful,
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the challenge is to calibrate the model to accurately reflect the real
world behavior – this can become unwieldy due to two reasons:
(i) the set of refrigeration systems across various stores can be dif-
ferent necessitating not one but several domain models; (ii) these
models need to be re-calibrated periodically to keep pace with com-
ponent aging.
Fault diagnosis in HVAC systems and operations: Though the
underlying principle of refrigeration remains the same as that of a
refrigerator/simple air-conditioner, centralized HVAC systems have
a larger set of components and involve multiple heat exchangers.
There have been several works that focus on detecting faults not
only in HVAC systems but also in their operations (or control set-
tings). Narayanaswamy et. al. [9] adopt a data-driven approach
to detect faults in HVAC usage. Their focus is on detecting faults
in variable air volume (VAV) control settings and use parameters
which are very HVAC specific. Similarly, Zhou et. al [18] propose
a regression based approach based on HVAC specific parameters
to detect faults in HVAC sub-systems. On the other hand, the fo-
cus of our paper is on refrigeration systems and we use a different
set of parameters. Consequently, the methodologies and classifi-
cation rules proposed using HVAC specific parameters may not be
applicable in our context. Reference [13] discusses about detecting
refrigerant leaks in large chillers using artificial neural networks.
They do a simulation based study and use temperatures gathered at
various points in the refrigeration loop as feature vectors. Unlike
them, we use the liquid level in the receiver as a feature, which
is relatively simpler, to detect leaks and test their efficacy in real
world systems. We also focus on identifying other kinds of faults.

Some work has been done to demonstrate that anomalous behav-
ior of window air-conditioners in buildings can be detected from the
aggregate energy consumption (more precisely, the current drawn)
[10]. The anomaly is detected using the presence of high frequency
current spikes drawn by a faulty air-conditioner. Consequently,
these works assume that the energy/current signal is sampled at a
finer temporal resolution (every few seconds). However, the energy
data in real-world stores is typically available at a coarser granular-
ity and hence such methods may not be applicable.

3. BACKGROUND
The refrigeration load in a typical supermarket consists of dis-

play cases that house beverages, produce, or perishable items in
a refrigerated environment. These cases are typically at various
internal temperatures depending on the kind of product: (1) Bev-
erage coolers and dairy cases are typically maintained at around
36◦F - we refer to these as coolers; and 2) Frozen food needs to
be maintained at around −6◦F - we refer to these cases as freez-
ers. Because there is an economy of scale in cooling systems (in
terms of watts required to remove a unit heat-load), the heat loads
of multiple display cases are typically aggregated into one com-
pressor/condenser system.

3.1 System setup and operation
Figure 1 shows the configuration of a typical supermarket RS.

It consists of a compressor rack and a condenser rack. A com-
pressor/condenser rack may have one or more units of same or
different capacities with a common inlet and outlet. Each com-
pressor rack and its condenser unit serves multiple display cases
where the set-point temperature is identical or similar. Typically,
all freezer cases are served by one compressor-condenser system
and all cooler cases are served by a different compressor-condenser
system. Each display case has an individual evaporator with an
evaporator coil through which cold refrigerant flows through pick-
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Figure 1: Schematic of a simplified Refrigeration System con-
figuration indicating front-end and back-end components

ing up heat inside the case. The cases have fans that blow air across
the cold evaporator coil to enhance heat exchange.

The system operates in a typical refrigeration cycle as follows.
One or more compressors are staged (i.e., scheduled ON) by the
control system. These compressors pull in evaporated refrigerant
gas from a common suction line. The hot gas is compressed by
the compressors resulting in super-heated gas at very high pres-
sure. This super-heated gas is discharged by the compressors on
to a common discharge line. This discharge line feeds to the con-
denser(s) where because of the high pressure, the condensing tem-
perature of the refrigerant is high. Because the condensing tem-
perature of the gas is higher than the ambient temperature of the
air outside the condenser (in air-cooled systems), the refrigerant
rapidly loses heat (picked up from the evaporators) and undergoes
a phase transition to become a high-pressure liquid.

The high-pressure liquid is stored in a receiver, from which the
liquid enters the evaporators of the multiple display cases. Each
evaporator has a locally controlled valve that regulates the flow of
refrigerant through the evaporator. This expansion valve constricts
the flow and thereby reduces the pressure, forcing the liquid re-
frigerant to evaporate to a gas. This evaporation causes cooling
in the evaporator coil, which cools the refrigeration cases. Higher
the heat-load of the evaporator, more would be the flow of the liq-
uid refrigerant through the valve. If sufficient liquid refrigerant is
not available, the pressure of the hot gas leaving the evaporator in-
creases. The evaporator exit feeds the compressor’s suction line.
When the pressure on the suction line increases beyond a control
threshold, the compressors are switched on (if they are off), and the
entire cycle repeats.

4. ENERGY MODEL FOR ANOMALY DE-
TECTION

Most supermarkets in developing economies are at best, likely
to have energy meters. Typically, the back-end components includ-
ing the compressor and condenser systems are physically separated
from the front-end components in the store. Due to this spatial
separation, they are on different electrical circuits. Typically, the
front-end circuits (supplying to the display case lights, evaporator
fans, and door heaters) are connected to the store’s lighting supply,
while the back-end (supplying to the compressors and condensers)
has a standalone circuit which is metered. In this section, we dis-
cuss our approach to develop a model for the back-end refrigeration
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Figure 2: SARIMA model for predicting energy consumption (best viewed in color)

energy consumption. We develop a baseline model for the energy
consumption using energy data gathered from fault-free durations
of the system. The actual consumption observed in the refrigeration
system is then compared against this model in an on-line manner.
Any significant deviations are flagged as anomalies.

The underlying hypothesis behind this approach is that a fault
in any of the refrigeration system component would present itself
in the energy signal. As per this hypothesis, we expect that prob-
lems in the backend system would result in increase in energy con-
sumption of the backend system. In addition, any problem in the
frontend system could also cause an increase in the backend energy
consumption. For example, consider a refrigerated case (RC) door
that is left open permanently; the compressor system would see an
additional heat-load and consequently consume more energy. In
sum, both front-end and back-end systems are expected to result
in anomalies in the back-end energy consumption. Therefore, we
focus on developing energy models for the back-end energy con-
sumption so as to be able to detect a wider range of faults.

Ideally, to model the energy consumption, we need to capture the
dynamics of the control system(s) of the refrigeration system, track
the evolution of the compressor and condenser system states, and
map the system operating states to the energy consumption. How-
ever, the control choices in the compressor and condenser systems
are typically proprietary and tuned locally to a site by the installa-
tion vendor. Also, this approach would be prone to the drawbacks
associated with a domain-based model discussed in Section 2. Fur-
ther, even if one were to develop a model that tracks the system
state in terms of the controlled variables, it is difficult to calibrate
such a control system model (which runs every few seconds) from
the sensory data that is typically logged every few minutes There-
fore, we do not model the back-end at a control system level.

4.1 Statistical model - SARIMA
In the absence of an explicit control system model, our approach

is to use a statistically-based SARIMA (Seasonal-ARIMA) model
for predicting the energy consumption and implicitly tracking the
system state. Essentially, the SARIMA model estimates the energy
consumption as a regressed function of temporally adjacent sam-
ples as well as temporally well-separated samples. We adopted a
SARIMA based approach to model the energy for the following
reasons: (i) Because the SARIMA model uses temporally adjacent
past energy samples to predict the next sample, any effect due to
the control system actions are captured. (ii) Because the SARIMA
model uses temporally well-separated samples as well (in the sea-
sonal component), it implicitly captures the trends that may exist in
the ambient weather conditions.

The energy data is available to us over every 15 minutes as the
average power consumed over the interval 2 . Figure 2(a) shows the
autocorrelation function (ACF) of the energy timeseries for a typ-
2Therefore, neglecting the semantics and abusing the terminol-
ogy, we use energy and power interchangeably in this paper.

ical store, while Figure 2(b) shows the corresponding partial ACF.
The X-axis shows the lag of the correlation function where each lag
corresponds to 15 minutes, and the Y-axis shows the correlation co-
efficient at that lag. The figures indicate that a seasonal parameter
is required to account for the trend in the ACF. We note the peri-
odicity at every 96 samples (corresponding to one day). We used
the Box–Jenkins methodology to arrive at the appropriate orders
for the SARIMA model. For a typical store, the order of the pa-
rameters in the SARIMA model are as follows: Autoregressive (3),
Moving Average (2), Seasonal Auto-regressive (1), Seasonal Mov-
ing Average (1), period of 96, and order of differencing 1. This
indicates that to predict an power value given the past history, we
need to look into local samples (order of hours) to non-local sam-
ples (order of days).

Figure 2(c) compares the predicted and actual power consump-
tion time-series with prediction one-sample ahead with all past his-
tory known. The X-axis shows time in days and the Y-axis shows
the power consumption over 15 minute intervals. The match is very
good between the predicted and actual with a mean relative error of
6.7%. Figure 2(d) shows the Q-Q plot that compares the quan-
tiles of the predicted and the actual time-series. We note that ex-
cept for the upper and lower tails, the predicted matches very well
the actual. The upper and lower tails can be used by one for de-
tecting anomalous operations as explained later in Section 6. This
SARIMA model is used as the baseline model for energy.
Limitation of the SARIMA model: Recall that the main goal of
building a SARIMA model is to use it for detecting anomalous en-
ergy samples. Once an anomalous sample is detected say at t, that
sample value should not be used for future predictions starting at
t + 1. This is to ensure that an anomalous sample does not pol-
lute the subsequent predictions. The standard practice is to typi-
cally use the predicted estimate of the anomalous sample – which
is typically the maximum likelihood estimate (MLE) of the sam-
ple’s mean value, as the actual sample value for future predictions.
When we correct an anomalous sample with the MLE of the sam-
ple mean expected at that time, the ensuing sample values predicted
from the SARIMA model could diverge from the actual energy se-
ries. This is true especially when there is a burst of anomalous
samples detected within a small time interval. SARIMA predicted
energy values can diverge from the actual energy series because
the SARIMA model would converge to the stationary mean of the
time-series. Figure 4 shows a case when a series of anomalous
samples are omitted, and the corresponding SARIMA mean MLE
is used to continue prediction. As we can see, the predicted time-
series diverges significantly from the actual series when a series of
anomalous samples are detected. Therefore, we need a mechanism
that can help us correct anomalous samples for a burst of errors,
which is likely to happen when a malfunctioning equipment has
not been repaired for a period of time.
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Figure 4: Correcting anomalous samples with MLE predicted
samples for a burst of errors can cause the SARIMA model to
diverge from the actual data. (best viewed in color).

4.2 Physical model
To create an alternate model that can be used to correct anoma-

lous samples for SARIMA, we identify the physical parameters in-
fluencing energy and then fit a model.

As in the HVAC systems, ambient temperature is likely to a key
driver for the energy consumption of a refrigeration system’s back-
end. Figure 3(a) shows a scatter plot of a store’s average back-end
consumption over 15 minutes in the Y-axis against the average am-
bient temperature over the same 15 minute interval on the X-axis.
From the scatter plot, we see two distinct regimes of operation.
Specifically, there is a knee in the trend at some critical value of the
ambient temperature τ∗C of 62◦F . When the ambient temperature
TA is greater than τ∗C , the curve shows a clear increasing linear be-
havior, while for TA < τ∗C the curve is near flat to linear with a
small slope. We explain these trends as follows.
Linear trend for TA > τ∗C : Suppose the set-point temperature of
the refrigeration cases is TS , then the compressor-condenser sys-
tem is moving heat from a low-temperature of TS to an ambient
temperature of TA. Due to the physics of the heat flow, the work
done is at least given by H × TA−TS

TS
, where H is the freezer’s

heat load to be removed [16]. In the case of supermarket freezers
(and coolers), the internal set-point, TS , remains constant. Further,
the heat loads induced in the freezers would also remain constant
– since the freezers are in a space conditioned environment and the
items that are stocked inside afresh will already be at a temperature
comparable to TS . Therefore, we expect the energy required to re-
move H from inside the freezer case to outside the store to vary as
H
(

TA−TS
TS

)
. This explains the linearly increasing trend with TA

when the ambient temperature TA > τ∗C .
Flat trend for TA < τ∗C : We now want to understand why the
system does not behave as expected ideally, when the ambient tem-
perature is less than some critical value. For any cooling to hap-
pen in the refrigeration cases, one needs a refrigeration cycle to
take place (unless one is letting in air at ambient outdoor temper-

ature through separate piping). For at least some compressor(s)
to be working during the refrigeration cycle, we need to maintain
some minimum load on the compressor. A compressor being driven
by a motor cannot work with no pressure being maintained at the
exit (this is akin to short-circuiting a battery by offering zero resis-
tance). Therefore, the condenser system offers a minimum load to
the compressor by switching the cooling fans off when the ambient
temperature floats below a certain critical value. Consequently, the
energy consumption trend remains close to flat when TA < τ∗C ,
and this is true in most stores which have mostly one compres-
sor turned on during low ambient temperatures. We confirmed this
with the manufacturer’s design specification for the compressors.
The minimum design discharge pressure against which the com-
pressor is supposed to operate is around 148 psig for the refrigerant
type R-404A (which is used in the store under study); this corre-
sponds to a condensing temperature of 70◦F . Therefore, we expect
the condenser to maintain this minimum condensing temperature
load at any ambient temperature below 60◦F , after accounting for
the temperature differential of 10◦F with respect to the ambient.
Indeed, the control system for the fans maintains a differential of
about 10◦F between the condensing and the ambient temperatures.
Hidden variable: While the trends are quite clear, the spread in
the graph for the same ambient condition indicates a potential hid-
den variable that needs to be accounted for. Consider Figure 3(b)
which shows the energy consumption as a function of time along
with the temperature for the same store. The X-axis is in days for
both energy and temperature. Although the energy follows the am-
bient temperature as a trend, the instantaneous values show high
frequency components that do not depend on the ambient temper-
ature alone. Instead, these high frequency components occur at
deterministic times-of-the-day. This is confirmed by the time-of-
day aligned peaks and troughs of the energy signal at different days
as seen in Figure 3(c). The X-axis in Figure 3(c) is the time-of-day
over a 24 hour period. The Y-axis shows the energy consumption
across three days. We see that across all three days the peaks and
dips are aligned at the same times-of-the-day.

These sharp dips and spikes in the energy signal are due to de-
frost cycles. Specifically, RCs are defrosted according to a schedule
fixed by the store. During a defrost, the energy consumption first
dips because several refrigerated cases are taken offline and thus
the compressor bank sees a steep reduction in the heat load. Post
the defrost, the compressors see a sharp peak in the heat-load as the
cases at room temperature need to be quickly cooled to the freezing
temperature for maintaining food quality.

Figure 3(d) shows the RC energy consumption for a store as a
function of the ambient temperature for varying times-of-day. The
X-axis is the ambient temperature. The Y-axis shows a family of
three curves. Each curve shows the energy consumption for varying
ambient temperatures at a specific time-of-day. The three curves
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Figure 5: Time-series of RC energy and ambient temperature
with an anomalous sample being substituted with the physical
model prediction for that time-of-day and ambient tempera-
ture. Note that the model does not diverge from actual sample
points unlike Figure 4.

are for three sequential times-of-day corresponding to normal op-
eration, defrost dip, and defrost peak. The curve in the middle cor-
responds to the normal operation, while the other two curves corre-
spond to the peak and the dip of the defrost cycle. We see that when
parametrized by time-of-day the scatter plot seen in Figure 3(a) re-
solves into a family of curves as shown in Figure 3(d). Therefore,
any physical model should consider the time-of-day as a parame-
ter, in addition to ambient temperature, for predicting the instan-
taneous energy consumption of the compressors and condensers.
Accordingly, to estimate the average energy consumption (Ê) cor-
responding to a given ambient temperature (T ), we first index into
the time-of-day (t) for the prediction; and then use the ambient tem-
perature to estimate the energy consumption. In other words, our
model is of the form Ê(t, T ) = φt(T ), where φt(.) is a regressor
that relates the energy consumption and external temperature T at
the time-of-day t.

We note here that the mean energy value predicted using φt(T )
on any given day for a t will not factor the effects of any shock or
disturbance seen earlier during preceding t’s. In other words, the
φt(T ) model does not capture the temporal correlations between
the energy samples as well as SARIMA. It is for this reason, we do
not use φt(T ) as the primary model for detecting energy anomalies.
As an aside, it is also difficult to obtain a tight bound on the false
positive rate of the φt(T ) model while (as we will see shortly) it is
possible to do so with a SARIMA model.
Overcoming SARIMA limitation: Figure 5 shows the effect of
correcting the SARIMA sample using the average physical model
prediction value for a given ambient temperature. This overcomes
the limitation highlighted in Figure 4. While the SARIMA model
starts diverging around the set of anomalous samples, because we
use the physical model, it reconverges to normal operations and the
predicted values once again match the normal values.

5. WORK-ORDERS: BACKGROUND
When a malfunctioning equipment is noticed (e.g., a condenser

fan making noise) or an anomalous operation is observed (e.g., an
RC not maintaining a cold environment), the store personnel log
a work-order. A work-order log basically describes the problem
symptoms, categorization, the day it was observed, the day it was
fixed, and details of an eventual fix. Ideally, work-orders should be
avoided through proactive maintenance. This is because a work-
order indicates that there was disruption of service and food could
potentially go bad entailing other losses.

Trivial work-orders are the ones that are readily detected by some
sensors tripping the pre-determined level. For example, a typical
compressor system would trip the compressor off if the discharge

Work-order type Symptoms
Leaky refrigerant Poor cooling in the coolers and freezers.
EPR valve malfunc-
tioning

Excessive cooling in cases. Items are too cold.

Iced evaporator Ice buildup across expansion coils in coolers and
freezers. Poor cooling.

Iced door Excessive condensation, frosting in case doors.
Poor visibility into the case.

Table 1: Work-order types and their associated symptoms

pressure becomes excessive and raises an alarm. In this paper, we
focus on non-trivial work-orders. The non-trivial work-orders oc-
curring in the system can be broadly categorized into those occur-
ring in the front-end and back-end systems. Over the study period
of five months, four types of work-orders occurred across our study
sample of 25 stores. The work-orders we observed are as follows:

• Leaky refrigerant: As the name indicates, this occurs when
the refrigerant leaks from system due to fatigue in pipe walls
or valves. If left unattended, can lead to a complete system
shut-down and no refrigeration (cooling) will take place. In
certain instances, even the compressors can get damaged.

• Malfunctioning EPR valve: EPR valve is the element which
throttles the refrigerant flow into the evaporator coils. A mal-
functioning valve can flood the evaporator coils with more
refrigerant than what is necessary. This can result in over-
cooling of the stored items which can damage the quality. In
extreme cases, even liquid refrigerant can enter the compres-
sors permanently damaging them.

• Iced evaporator: This is the work-order in which thick ice
or frost builds around the evaporator coils which decrease
the refrigeration effect. Consequently, the refrigerated case
becomes warm which can damage the food items.

• Iced door: This work-order results if the refrigerated case’s
glass door is all covered in frost/water vapour. This results
in poor visibility of the case items which can annoy the end
consumers. This work-order affects the sales.

These work-orders and the associated physical symptoms are sum-
marized in Table 1. Depending on the work-order, the time to fix
could vary from 9 to 83 days with an average of 29 days.

The work-orders are logged as soon as the symptoms become
visible and are observed by the store personnel. Our goal, how-
ever, is to detect these work-orders as early as possible, or even
anticipate them before these effects become visible thereby reduc-
ing/eliminating repair downtime through pro-active maintenance.
It is also likely that sensory instrumentation associated for detect-
ing some/all of these work-orders may not be available in smaller
stores and stores in developing economies. Therefore, we are inter-
ested in early-detection/prediction of these work-orders by observ-
ing how the energy signal behaves during work-orders.

6. DETECTING WORK ORDERS USING EN-
ERGY SIGNALS

As mentioned earlier, our underlying hypothesis is that any fault
or a work-order in any refrigeration system component would present
itself in the energy signal. We expect problems in both frontend and
backend systems to create anomalies in energy consumption of the
backend system.

Over the study period of 5 months, for each store, we identify
a consecutive duration of 30 days in which no work-orders occur.
To ensure that the data period corresponds to “normal” operations,
we allow for an additional buffer window of three days around the
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end-points of the identified 30-day window. While this method can-
not guarantee that no work-order points occur in the selection, we
believe this to be a reasonable approximation of the same. Using
the energy data over these 30 days, we train individual SARIMA
and Physical energy models for each store. We then use this model
the predict the energy samples for the rest of the days in our study
period (which becomes our test set). We compare the predicted
energy sample(s) with the actual energy sample(s) over an inter-
val to flag something anomalous. Because we flag samples over
an interval, any anomalous real sample cannot be used in future
predictions. So we use the physical model for the average energy
consumption to replace the anomalous energy sample in SARIMA
prediction as explained in Section 4. Using the prediction model,
we can identify anomalous samples and the associated deviations
of the actual energy samples from the predicted.

6.1 Anomaly detection rule
LetEA(t) denote the actual energy consumption at t andEP (t),

the predicted energy consumption. Let α be such that 0 ≤ α ≤ 1.
Define ε(t) = (EA(t)−EP (t))

EP (t)
. Over all t in the training set, let ε∗H

and ε∗L respectively denote the α-th and (1−α)-th percentile points
of ε(t). The value of α is chosen such that ε∗H corresponds to out-
liers that are positive (i.e., indicate increased energy consumption)
and ε∗L corresponds to outliers that are negative (i.e., indicate highly
reduced energy consumption). Our rule for classifying an energy
sample as anomalous and hence indicate the onset of a work-order
is as follows:

• Positive outliers: If ε(t) > ε∗H , then the sample at t is
anomalous and work-order is flagged.

• Negative outliers: If ε(t) < ε∗L, then the sample at t is
anomalous and work-order is flagged.

Note that as per the above rules, the occurrence of even one out-
lier would be detected as a work-order. While one could poten-
tially use two or more consecutive outliers to flag a work-order, we
do not do so for the following reason. Consider a malfunctioning
refrigerated case (RC) that presents a higher (lower) heat-load to
the compressor. The impact of this RC on back-end energy would
not be uniform throughout. It would depend on the relative loads
of other RCs served by the same compressor. Therefore, if there
is any front-end work-order in an RC, its effect on compressor en-
ergy may be quite short-lived (but not necessarily). Since energy
is sampled every 15 minutes at our study stores, to capture such
short-lived events, we have defined the classification rule to accom-
modate only one outlier. We note that, since the classification rules
are based on the error percentiles observed, the false-positive rate
of our classification is (1− α).

6.2 Error direction as work-order signatures
Depending on the impact of the anomaly on the operations, the

energy consumption could increase or decrease. Specifically, if the
anomaly increases (reduces) the heat load seen by the compres-
sor, it results in higher (lower) energy consumption. Among the
work-orders we observed, a refrigerant leak shows an anomaly in
the lower tail. Because refrigerant leaks from the system, lesser
pressure builds up at the compressors’ suction inlet, and so lesser
number of compressors are scheduled to reduce the built-up pres-
sure. This is demonstrated in Figure 6(a). Note that this will likely
be accompanied by a loss in cooling capacity. Therefore, if there
is a negative outlier in the energy signal, it can be construed as the
onset of refrigerant leak. The other three work-orders, however,
had anomalies which were all in the upper tail. Thus, the direction
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Figure 6: Error direction based classification of anomalies

of the anomaly can be used as a signature to identify the anomaly
root-cause to be a subset of the refrigeration system components (if
not to the degree of an individual component).

6.3 Performance
Choice of α: A low value of α would increase the likelihood of de-
tecting a work order but also would increase the false positive rate.
Suppose we have N samples per day from M data sources. Then,
for upper-tail anomalies, the number of samples that would be clas-
sified as potentially anomalous is approximately (1−α)×N×M .
Note that human checks or interventions are typically dispatched by
an external contracted agency in response to store personnel com-
plaints. Thus to keep human intervention to a reasonable frequency,
we assume a conservative estimate of the number of checks or visits
by a technician to be one per week. For a typical store,N = 96 and
M >= 2, and thus, the value of 1− α should be at most 0.00074.
As a more conservative choice, we use 1− α = 0.002.

Table 2 gives the detection likelihood and false positive rates of
the energy based detection. While the detection likelihood is calcu-
lated over stores with work-orders as seen in the ground truth, the
false positive rate is calculated over all stores. We note that the av-
erage false positive rates for the stores with work-orders is 0.06%,
which is lesser than the method’s expected 0.2%. For the stores
with no work-orders, the false positive rates are around 0.2%. In
sum, the detection likelihood is reasonable, and the false positive
rates are low. We also note that using energy anomalies, we are
able to detect the work-orders well in advance which can be quite
useful in practice.

Tail Work-orders Detection False Early
Likelihood (%) positive (%) detection

(days)
Upper Iced door, Iced

evaporator, EPR
valve

80 0.17 2.8

Lower Leaky refriger-
ant

95 0.12 20.1

Table 2: Performance of energy based detection

6.4 Comparison with baseline
As a baseline for comparison, we use the current practice of set-

ting a (static) threshold for the signal being measured; and using
any violation of the threshold as a potential outlier. We proceed
with the comparison as follows. For a given α, we identify the
(1−α)-th percentile point as the (static) threshold for the baseline
approach. For the same α, we use the (1 − α)-th percentile point
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Figure 7: Comparison with a static threshold based approach across stores

of the error between our predicted value of the energy and the ac-
tual sample, as the (dynamic) threshold. For both approaches of
classifying samples as outliers, we calculate the standard metrics
of classification, i.e., precision and recall, and compose them using
the G-score, which is defined as

√
(Precision×Recall).

Figure 7(a) compares the performance of our approach and the
baseline approach for the best-performing store. The X-axis shows
the cut-off percentile α for the classification. The Y-axis shows the
G-score as a function of α as evaluated on the data-set for that store.
As can be seen, our approach performs significantly better than the
baseline approach for most values of α in this store. Further, for the
value of α chosen to minimize the number of human interventions,
the performance is close to the best performance.

Figure 7(b) shows a store where our approach performs very sim-
ilar to a statically chosen threshold. In this store, the variation in
energy is very low across time and temperature, that there is hardly
any need to predict the current consumption as a function of time-
of-day and temperature. Therefore, a simple static threshold identi-
fies the same anomalies that any prediction-based approach identi-
fies. The average improvement of our approach (average across all
stores for each value of α) is shown in Figure 7(c). We find that the
average improvement is significant enough to merit a model that
accounts for modeling temporal variations in the energy signal.

7. IDENTIFYING WORK-ORDERS USING
OTHER SENSORS

Having detected work-orders using anomalies in the energy sig-
nal, we now explore if the root-cause of the problem or the faulty
component can be identified. This would help in stores where a
reasonable set of sensors have been deployed. Typically, among
others, sensors are deployed for: number of active compressors,
number of active condenser fans, refrigerant temperature at con-
denser exit, level of the refrigerant in the receiver, temperature and
pressure of the refrigerant at the suction end of the compressor,
temperature and pressure of the refrigerant at the discharge side,
and energy consumed by door heaters and evaporator fans.

7.1 Model fitting for sensory data
As with the energy time series, we fit a suitable statistical model

for each individual sensor and identify anomalous samples. We
hypothesize that a work-order will be identified by anomalies in
one or more sensors. The goal is to identify one or more sensory
streams that can be used as a feature vector. The training and testing
set is taken from the same duration as done for the energy models.
The value of α is taken to be 99.8.

Since the ambient temperature and energy consumption have
daily patterns, several of these sensory variables (e.g., discharge
pressure of a compressor)also follow a similar pattern. Thus, for all

those sensors which have a statistically tractable model, we identify
upper and lower tails as seen before for energy.

Some sensed parameters, on the other hand, are maintained at a
steady level and can be treated as stationary processes. For exam-
ple, the suction pressure at the inlet of compressors is maintained
within a band typically by using PID based scheduling of compres-
sors. If the heat load increases, the suction pressure goes up, and
compressors are turned on to reduce the pressure by pulling the hot
refrigerant in. For such sensors, the data can be treated as a station-
ary ARMA time-series and upper and lower tails of this station-
ary distribution can be obtained to see if there are any anomalies
given the local history. As with the energy time series, anomalous
samples are substituted with estimates obtained from appropriate
alternative regression based models.

7.2 Mapping sensor readings to work-orders
Let K be the number of sensors deployed to monitor a refriger-

ation system in a store. Let S(t) =< S1(t), S2(t), · · · , SK(t) >
be the array of sensor readings at time t corresponding to each of
the k sensors deployed. Given the past history up to t − 1, us-
ing either SARIMA or stationary models, we flag an anomaly at t
if at least one of the sensors Si(t) is anomalous according to the
individual time-series model. Admittedly, this approach does not
consider combinations of sensor readings and does not explicitly
use information that may be available in the joint distributions of
the sensors. Nevertheless, we find that this approach is effective
and can yield reasonably good results.

For the work-orders that we have observed in our dataset, we find
that there is good correlation between the observed anomalies in
the sensor data and the work-order being logged in the system. For
each of the four work-orders observed in our study stores, there was
one sensory signal whose anomaly uniquely identifies the work-
order. In other words, the anomaly of the unique sensory signal
acts as the feature vector for classifying the work-order.

The sensory parameter used as the feature for each work-order
type is shown in Table 3. Figures 8(b), 8(a), 8(d), 8(c) show the sen-
sor anomaly samples respectively for work orders corresponding to
excessively cold refrigerated case, ice buildup in the evaporator,
leaky refrigerant, and ice buildup on doors.

7.3 Sensors as features for work-orders

Sensor Work-order
Liquid level Leaky refrigerant

Suction temperature Faulty EPR value
Active compressors Evaporator ice buildup
Door heater energy Frosting/condensation in doors

Table 3: Sensors features for work-orders
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Figure 8: Sensor based classification of work orders

We now explain why each type of work order manifests as an
anomaly in the corresponding sensor reading. Recall Figure 1 that
shows the refrigeration cycle in a RC. We expect that an anomaly in
each component would show up as an anomaly in the sensor read-
ing either in the inlet or the outlet of the component within a short
period of time; the anomaly could also show up in another compo-
nent after a significant period of time. For ease of presentation, we
first highlight an example with anomalous sensor readings for each
work-order type and summarize aggregate performance statistics
later.

Ice buildup in evaporator: When ice builds up in the evap-
orator, the ice thermally insulates the evaporator from the rest of
the refrigerated case. Therefore, the normal heat flow rate from
the refrigerated case to the refrigerant (which carries it away as it
flows) is reduced. Because the liquid refrigerant continues to flow,
to maintain a set-point, the liquid refrigerant flow rate through the
evaporator needs to increase. Thus, additional compressors need to
be scheduled to increase the refrigerant flow rate as the compres-
sors act in parallel. This also leads to an increase in the energy
consumption. We expect to see this picked up in the number of
compressors that are scheduled.

Figure 8(a) shows a smoothed (over 1 hour) version of the num-
ber of active compressors in the system. Between days 3 and 4, we
see than the number of compressors exceeds the 99.9% percentile
of all points during operation. The energy also picks up during this
interval as seen in the corresponding upper tail anomaly graph in
Figure 6(b). As explained later, using both the energy and sensor
based thresholds could be used to reduce the false positive rate.

Excessive cooling in refrigerated cases: Excessive cooling in
an RC implies that the flow rate of the refrigerant through the evap-
orator is higher than the heat load offered by the evaporator. This in
turn would result in the refrigerant leaving the evaporator without
picking up much-heat, i.e., a refrigerant with less super-heat. Con-
sequently, this gets detected in the monitored suction temperature
being lower than expected for that ambient condition.

Figure 8(b) shows the monitored suction temperature as a func-
tion of time for a store with a excessively cold refrigerated case.
Between days 28 and 29, the monitored suction temperature dips
significantly. The dip is observed with a corresponding increase in
the energy consumption (i.e., an upper-tail energy anomaly).

Ice build up on case door: Whenever there is condensation or
frosting in the door of a refrigeration case, the door heater gets
turned on (by sensing the humidity level) and evaporates the con-
densate. Since this is a state dependent activity, it is non-periodic.
When the door heater fails to get turned on, frost build-up happens.
This non-turning of door heater can be detected as an anomaly in
the front end energy consumption signal. Specifically, we expect to
see that the signal has lesser “noise” than average, which we con-
firm by using a rolling deviation of the signal. Figure 8(c) shows
that the front-end energy channel showing a flat consumption well
before the period the work-order is actually noticed and logged.

Leaky refrigerant: Consider the receiver in Figure 1. The re-
frigeration loop tries to produce and maintain some level of liquid
refrigerant in the receiver. Because the loop is closed, for a given
ambient condition, we expect the time-average liquid level to be
roughly constant, barring transient oscillations due to compressors
and condensers turning on and off. However, when the refrigerant
leaks from the system, we expect the average liquid level main-
tained in the receiver to go down significantly from the expected
value. We have developed a statistical model for the liquid level,
and we see that the average liquid level does go down when the
work-order of refrigerant leak is logged in the system. Note that
the work-order is logged in the system only when the liquid level
is critically low and trips some sensor. Figure 8(d) shows the liquid
level for a store with leak refrigerant. There is a progressive degra-
dation is the maintained liquid level, and there is a sharp perturba-
tion just before the work-order itself is logged around day 17-18.

7.4 Overall performance across work-orders
While a sensor reading can detect a particular work-order, it does

so with some false positive rate. We find that while using both en-
ergy and sensor readings to identify and classify an anomaly, the
false positive rate decreases in comparison to using the sensor alone
for detection. This is because the energy signal is correlated with
the sensory signals, especially around true anomalies which allows
combining the two information streams with beneficial results. Ta-
ble 4 shows the results of the detection using both the sensor and
energy signals. On an average, the detection using energy and sen-
sors has lesser false positives than the expected tail probability mass
of 0.2%, indicating the robustness of the method. Further, the time
of early detection is good and very significant in the case of liquid
level work-orders. This is because the degradation in liquid level
due to a refrigerant leak is a progressive event, the actual work or-
der being logged only when the receiver fails to function due to to
critically low refrigerant during operation. The impact on the de-
tection likelihood is very little for three of the four work-orders.
The detection likelihood decreases for the evaporator ice build-up
work-order alone. This can be overcome by using a lower threshold
value α for detecting the energy anomalies. The increase in false
positives in energy anomalies will be toned down in the overall de-
tection due to the supplementary sensory input (viz., # of active
compressors).

Table 5 presents the confusion matrix using data from both en-
ergy and sensors. Each metric is first calculated for each store.
For the sake of brevity, we present the average (across all stores)
value of the metric averaged in each of the rows. While the preci-
sion and recall values for three types of work-orders are acceptable,
the precision for the frosting work-order is low. This is because in
our data-set we could detect only one true positive, while signifi-
cant number of false positives were triggered due to a conservative
choice of α = 0.98 across all work-order types, whereas a higher
α would improve the precision.

109



Features used Energy Sensor & Energy
Work-order Detection False Detection False # stores # Events Avg Early

Likelihood (%) Positives (%) Likelihood (%) Positives (%) Detection (days)
Faulty EPR valve 100 0.13 66 0.05 4 6 4.9

Evaporator ice buildup 71 0.18 71 0.02 7 7 1.43
Leaky refrigerant 95 0.12 95 0.03 11 12 20.2
Frosting in doors 100 0.19 100 0.17 1 1 0.33

Table 4: Combining detection from energy and sensors improves the classification accuracy

Work-order False Positive False Negative True Positive True Negative Precision Recall
Faulty EPR valve 0.0005 0.0002 0.0007 0.9985 0.53 0.75

Evaporator ice buildup 0.0002 0.0005 0.0015 0.9979 0.90 0.75
Leaky refrigerant 0.0003 0.0011 0.0033 0.9953 0.82 0.77
Frosting in doors 0.0018 0.0001 0.0001 0.9981 0.06 0.67

Table 5: Details of the classification accuracy when using both energy and sensors. For each work-order type, the metrics are
averaged across all the stores where that work-order occurs.

8. CONCLUSIONS
Refrigeration systems consume a significant portion of super-

market aggregate energy consumption. Because failure of such
systems can have significant impact on store operation, it is impor-
tant to identify any potential faults in their operation before critical
failure. We presented a data-driven study of fault detection in 25
stores. Using the energy signal alone, we were able to identify
faults with good detection likelihood and low false positive rates.
The method could detect faults 2.8-21 days before the fault is noted
in the database. Using additional sensors, we were able to further
classify the faults into the four types that occurred during the du-
ration of the study using a union of faults shown up by all sensors.
Future directions of work include modeling dependencies between
sensors to identify frequently occurring short-term anomalies that
remain undetected with long-term modeling.
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